If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+16a+3=10
We move all terms to the left:
a^2+16a+3-(10)=0
We add all the numbers together, and all the variables
a^2+16a-7=0
a = 1; b = 16; c = -7;
Δ = b2-4ac
Δ = 162-4·1·(-7)
Δ = 284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{284}=\sqrt{4*71}=\sqrt{4}*\sqrt{71}=2\sqrt{71}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{71}}{2*1}=\frac{-16-2\sqrt{71}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{71}}{2*1}=\frac{-16+2\sqrt{71}}{2} $
| 27=a/3 | | 35,000=10,000(1.04)^3x | | 3(2+5b)=-84 | | d+39=98 | | a^2+16+3=10 | | (2+x)0.2=x1.0 | | 12n^2-14n-37=6n^2-12n-9 | | 6x-9=4x-24 | | (5x+40)=(2x+115) | | 2(6x-1)=8x | | 8-2·x=18 | | 4x+9x+7x=120 | | 2(x-4)-(x-2)=(x+2)+12 | | 6(n-3)=4(n-21) | | 18=2(3x+1)-2 | | 5x-1x+3=3x+6-5 | | -3(5p+6)-2(2-14p)=3(5+4p) | | (x-6)·(x+4)=0 | | 2(3b-4)=6b-8 | | 17+2x=4x+3 | | (2r+50)=100 | | x(3)=76 | | 1/3x=-46 | | 5(2m-4)=7(m+1)-3 | | 3/50=6/x | | 62+d=45 | | 8y–9y+6=-4 | | 1/3x-12=-34 | | 4.9q-1.5-5.3q=-1.4q-1.5 | | 3/4(6x2)=15 | | 2x+115=360 | | 2/5=w/4 |